Triangular Element for Plate Bending - Part 2
SummaryDescribes strain and stress calculation for a simple triangular element for thin plate bending.
Strain, Stress and MomentContinue from Part 1, we can now define strains as
Remember from Area Coordinates that
|
![]() |
Lcy2 = ∂2(½L1L2L3)/∂y2 = c1c2L3 + c1L2c3 + L1c2c3
∂2w/∂y2 = β4(2c1c1L2 + 4L1c1c2 + Lcy2) + β5(2c1c1L3 + 4L1c1c3 + Lcy2)
+ β6(2c2c2L3 + 4L2c2c3 + Lcy2) + β7(2c2c2L1 + 4L2c2c1 + Lcy2)
+ β8(2c3c3L1 + 4L3c3c1 + Lcy2) + β9(2c3c3L2 + 4L3c3c2 + Lcy2)
Similarly, let
Lcx2 = ∂2(½L1L2L3)/∂x2 = b1b2L3 + b1L2b3 + L1b2b3∂2w/∂x2 = β4(2b1b1L2 + 4L1b1b2 + Lcx2) + β5(2b1b1L3 + 4L1b1b3 + Lcx2)
+ β6(2b2b2L3 + 4L2b2b3 + Lcx2) + β7(2b2b2L1 + 4L2b2b1 + Lcx2)
+ β8(2b3b3L1 + 4L3b3b1 + Lcx2) + β9(2b3b3L2 + 4L3b3b2 + Lcx2)
Let,
Lcxy = ∂2(½L1L2L3/∂x∂y = ½(b1c2L3 + b1L2c3 + c1b2L3 + L1b2c3 + c1L2b3 + L1c2b3)
∂2w/∂x∂y = β4(2c1b1L2 + 2L1b1c2 + 2L1c1b2 + Lcxy) +
β5(2c1b1L3 + 2L1b1c3 + 2L1c1b3 + Lcxy) + β6(2c2b2L3 + 2L2b2c3 + 2L2c2b3 + Lcxy) +
β7(2c2b2L1 + 2L2b2c1 + 2L2c2b1 + Lcxy) + β8(2c3b3L1 + 2L3b3c1 + 2L3c3b1 + Lcxy) +
β9(2c3b3L2 + 2L3b3c2 + 2L3c3b2 + Lcxy)
Putting these into matrix form:
![]() |
ε | ![]() |
= | ![]() |
|
![]() |
![]() |
CI | ![]() |
![]() |
d | ![]() |
XX4 = (2b1b1L2 + 4L1b1b2 + Lcx2)
XX5 = (2b1b1L3 + 4L1b1b3 + Lcx2)
XX6 = (2b2b2L3 + 4L2b2b3 + Lcx2)
XX7 = (2b2b2L1 + 4L2b2b1 + Lcx2)
XX8 = (2b3b3L1 + 4L3b3b1 + Lcx2)
XX9 = (2b3b3L2 + 4L3b3b2 + Lcx2)
YY4 = (2c1c1L2 + 4L1c1c2 + Lcy2)
YY5 = (2c1c1L3 + 4L1c1c3 + Lcy2)
YY6 = (2c2c2L3 + 4L2c2c3 + Lcy2)
YY7 = (2c2c2L1 + 4L2c2c1 + Lcy2)
YY8 = (2c3c3L1 + 4L3c3c1 + Lcy2)
YY9 = (2c3c3L2 + 4L3c3c2 + Lcy2)
XY4 = 2(2c1b1L2 + 2L1b1c2 + 2L1c1b2 + Lcxy)
XY5 = 2(2c1b1L3 + 2L1b1c3 + 2L1c1b3 + Lcxy)
XY6 = 2(2c2b2L3 + 2L2b2c3 + 2L2c2b3 + Lcxy)
XY7 = 2(2c2b2L1 + 2L2b2c1 + 2L2c2b1 + Lcxy)
XY8 = 2(2c3b3L1 + 2L3b3c1 + 2L3c3b1 + Lcxy)
XY9 = 2(2c3b3L2 + 2L3b3c2 + 2L3c3b2 + Lcxy)
Let,
![]() |
ε | ![]() |
= | ![]() |
B | ![]() |
![]() |
d | ![]() |
![]() |
B | ![]() |
= | ![]() |
|
![]() |
![]() |
CI | ![]() |
Stresses are defined as moment per unit length.
{M} = [D]{ε} = [D] [B] {d}
![]() |
Mx My Mxy |
![]() |
= | Et3 12(1-v2) |
![]() |
|
![]() |
![]() |
∂2w/∂x2 ∂2w/∂y2 2∂2w/∂x∂y |
![]() |
Stiffness matrix is then,
[K] = [D][B]
where,
![]() |
D |
![]() |
= | Et3 12(1-v2) |
![]() |
|
![]() |




